Feature Selection as an Improving Step for Decision Tree Construction
نویسنده
چکیده
The removal of irrelevant or redundant attributes could benefit us in making decisions and analyzing data efficiently. Feature Selection is one of the most important and frequently used techniques in data preprocessing for data mining. In this paper, special attention is made on feature selection for classification with labeled data. Here an algorithm is used that arranges attributes based on their importance using two independent criteria. Then, the arranged attributes can be used as input one simple and powerful algorithm for construction decision tree (Oblivious Tree). Results indicate that this decision tree using featured selected by proposed algorithm outperformed decision tree without feature selection. From the experimental results, it is observed that, this method generates smaller tree having an acceptable accuracy.
منابع مشابه
Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملA New Hybrid Method for Improving the Performance of Myocardial Infarction Prediction
Abstract Introduction: Myocardial Infarction, also known as heart attack, normally occurs due to such causes as smoking, family history, diabetes, and so on. It is recognized as one of the leading causes of death in the world. Therefore, the present study aimed to evaluate the performance of classification models in order to predict Myocardial Infarction, using a feature selection method tha...
متن کاملUsing Data Mining and Three Decision Tree Algorithms to Optimize the Repair and Maintenance Process
The purpose of this research is to predict the failure of devices using a data mining tool. For this purpose, at the outset, an appropriate database consists of 392 records of ongoing failures in a pharmaceutical company in 1394, in the next step, by analyzing 9 characteristics and type of failure as a database class, analyzes have been used. In this regard, three decision tree algorithms have ...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کامل